Preliminary communication

μ -Methylene transition metal binuclear compounds: complexes with Me₃ SiCH₂⁻ and related ligands

M.R. COLLIER, M.F. LAPPERT and MARGARET M. TRUELOCK School of Molecular Sciences, The University of Sussex, Brighton BN1 9QJ (Great Britain) (Received August 31st, 1970)

We wish to draw attention to an important class of ligands R^- , which promises significantly to extend the scope of σ -alkyl complexes and hence of organometallic compounds. These may formally be regarded as carbanions in which one or more α -H atom(s) have been replaced by an organometallic or t-alkyl fragment. Attention to date has concentrated upon transition metal complexes LMR having as ligand(s) the groups Me₃SiCH₂, Me₂PhSiCH₂, (Me₃Si)₂CH, (Me₃Si)₃C, (Me₃Si)Ph₂C, Me₃SnCH₂, Me₃CCH₂, and Me₂PhCCH₂.

Satisfactory analyses and spectra have been obtained for the compounds shown in Table 1. Less complete data are available for *inter alia* Ti(CH₂SiMe₃)₄, Zr(CH₂SiMe₃)₄, Zr(CH₂SiMe₂Ph)₄, $(\pi$ -C₅H₅)₂Nb(CH₂SiMe₃)₂, (Ph₃P)₃RhCH₂SiMe₃, π -C₅H₅(Ph₃P)NiCH₂SiMe₃, and Ni(CPh₂SiMe₃)₂. Some results have been described at a conference in East Germany¹, and in a patent application². An unexpectedly large neighbouring group effect of the transition metal moiety LM in the complexes LM-CH₂-M'Me₃ [LM = π -C₅H₅(CO)₃Mo, π -C₅H₅(CO)₃W, or π -C₅H₅(CO)₂Fe; and M = Si or Sn] has been discovered³, as demonstrated by the ease of nucleophilic cleavage of the CH₂-M' bond; an effect which is very sensitive to changes in LM or M'.

The compounds shown in Table 1 were prepared by the salt elimination procedure,

TABLE 1				
Compound	Yield (%)	Appearance	M.p. (°C)	
$(\pi - C_5 H_5)_2 Ti(CH_2 SiMe_3)_2^a$	60	golden needles	Ь	
$(\pi - C_5 H_5)_2 Zr(CH_2 SiMe_3)_2^d$	70	white needles	96–97	
$(\pi - C_5 H_5)_2 Hf(CH_2 SiMe_3)_2^{a}$,	50	white needles	83	
T-C5H5(CO)3MoCH2SiMe3, J	3	(yellow liquid)	_	
π -C ₅ H ₅ (CO) ₃ WCH ₂ SiMe ₃ ^{-τ, u}	55	yellow crystals	32	
π -C ₅ H ₅ (CO) ₃ WCH ₂ SiMe ₂ Ph ^d	40	yellow needles	4749	
π -C ₅ H ₅ (CO) ₂ FeCH ₂ SnMe ₃ ^{<i>u,v</i>}	60	yellow needles	29-30	

^a Using Me₃SiCH₂Li. ^b Compound did not melt (sealed tube under argon) up to 300° but gradually darkened to a black solid. ¹H NMR in CDCl₃ (CHCl₃ as standard), τ 3.89 (π -C₅H₅), τ 9.11 (CH₂), τ 10.06 (Me₃Si). ^c See ref. 3. ^a Using Me₃SiCH₂I, PhMe₂SiCH₂I, or Me₃SnCH₂I. ^e The Si analogue has been reported¹⁴.

J. Organometal. Chem., 25 (1970) C36-C38

as illustrated by Eqs. (1) and (2). The transition metal anion procedure was necessarily inapplicable to the Group IVA derivatives. The yields (see Table 1) for reactions of Eq. (2) depend on the relative importance (a function of M, M', and n) of the competing reactions of Eq. (3)³.

$$(\pi - C_{5} H_{5})_{2} MCl_{2} + 2LiCH_{2} SiMe_{3} \xrightarrow{Et_{2}O, 0^{\circ}} (\pi - C_{5} H_{5})_{2} M(CH_{2} SiMe_{3})_{2} + 2LiCl (1)$$

$$(M = Ti, Zr, or Hf)$$

$$[\pi - C_{5} H_{5}(CO)_{n}M]^{-}Na^{+} + Me_{3}M'CH_{2}I \xrightarrow{THF, 20^{\circ}}_{(see also ref. 3)} \pi - C_{5}H_{5}(CO)_{n}M - CH_{2}M'Me_{3} + NaI (2)$$

$$(M = Mo \text{ or } W, M' = Si, n = 3; \text{ or } M = Fe, M' = Sn, n = 2)$$

$$\pi - C_{5}H_{5}(CO)_{n}M - CH_{2}M'Me_{3} + [\pi - C_{5}H_{5}(CO)_{n}M]^{-}Na^{+} \rightarrow [\pi - C_{5}H_{5}(CO)_{n}MCH_{2}]^{-}Na^{+} + \pi - C_{5}H_{5}(CO)_{n}MM'Me_{3}$$

$$THF \int_{\pi - C_{5}H_{5}(CO)_{n}MCH_{3}} (3)$$

The thermal stability of these compounds seems, in all cases, to be equal to or greater than that of the corresponding methyl compounds, and greater than that of higher alkyl homologues. For example, it has been noted⁴ that $(\pi - C_5 H_5)_2$ TiMe₂ can spontaneously decompose upon attempted sublimation at 40° and even at 20° often decomposes to a black material within a few days⁵, whereas the corresponding $(\pi - C_5 H_5)_2$ Ti(CH₂ SiMe₃)₂ appears to be stable indefinitely at 20°. Also $\pi - C_5 H_5$ (CO)₂ FePr-i and $\pi - C_5 H_5$ (CO)₃ WPr-i decompose at or below 60° and attempted preparation of $\pi - C_5 H_5$ (CO)₂ FeBu-t gave only the corresponding hydride and isobutene⁶, whereas $\pi - C_5 H_5$ (CO)₃ WCH₂ SiMe₃ was distilled in vacuo without appreciable loss. A β -hydrogen abstraction decomposition pathway has been shown to be the major decomposition route not only for the complexes $\pi - C_5 H_5$ (CO)₂ FeR and $\pi - C_5 H_5$ (CO)₃ MR (M = Mo or W, R = alkyl but not methyl) but also very recently for the analogous $(\pi - C_5 H_5)_2$ TiPh₂ complex⁷.

The new ligands R^- appear to us to be of interest for the following reasons. (a) σ -Alkyl ($C_n H_{2n+1}, n > 1$) transition metal complexes are often unstable because, with derivatives other than methyl, a β -hydrogen abstraction pathway (e.g. an olefin-producing elimination reaction) is available; this is not the case for LMR.

(b) Trimethylsilyl substitution at nitrogen has provided interesting transition metal chemistry: e.g. transition metal dimethylamides $M(NMe_2)_n$, in contrast to $M[N(SiMe_3)_2]_n$ analogues⁸, are often polymeric or unstable; $Fe[N(SiMe_3)_2]_3$ is the first authenticated three-coordinate transition metal complex⁹. Since $N(SiMe_3)_2$ is isoelectronic and pseudo-isostructural with CH(SiMe_3)_2, Me_3 Si substitution at the α -C promises similar rewards.

(c) Groups such as $Me_3 SiCH_2$, when attached to carbon, are powerfully electronreleasing¹⁰. Their electronic effect upon a transition metal centre is of interest, especially when considered serially [e.g. in LM-CH₂-SiMe₃, LM-CH(SiMe₃)₂, and LMC(SiMe₃)₃; LMCH₂SiMe₃ and LM'CH₂SiMe₃; and LMCH₂SiMe₃, LMCH₂GeMe₃, and LMCH₂SnMe₃]; quantitative studies are in hand.

(d) Groups such as $Me_3 SiCH_2$ may be electronically related to PhCH₂ from the standpoint of radical or carbanion stabilisation; *e.g.* the radical $(Me_3 Si)_3 C$, which may be generated from Hg[C(SiMe₃)₃]₂, is relatively long-lived¹¹, comparable with but less stable than Ph₃C. Such stabilisation, in addition to (a), may account for some recent developments in the chemistry of benzyl¹² and trityl¹³ transition metal complexes.

(e) Ligands such as $Me_3 SiCH_2$ are likely to confer solubility in non-polar media upon metal complexes. This may have a bearing on spectroscopic studies and on their use in homogeneous catalysis.

Consistent with (a)–(e) is the enhanced (for σ -alkyl complexes) thermal and chemical stability of the transition metal complexes LMR (e.g. R = Me₃SiCH₂). Additionally, it appears that unusual (for σ -alkyls) oxidation states (e.g. Nb^{IV}) or coordination numbers (e.g. the NiR₂ complex), and complexes free from "stabilising" ligands such as π -C₅H₅, CO, and Ph₃P (e.g. the ZrR₄ complexes) become accessible.

ACKNOWLEDGEMENT

We thank the S.R.C. for the award of a studentship (to M.R.C.). [Added in proof: We thank Prof. G. Wilkinson for informing us of his interest¹⁵.]

REFERENCES

- 1 M.R. Collier, B.M. Kingston and M.M. Truelock, Koordinationschemie der Übergangselemente, Jena, Sept. 1969.
- 2 M.R. Collier, B.M. Kingston, M.F. Lappert and M.M. Truelock, British Pat. 36021 (July, 1969).
- 3 M.R. Collier, B.M. Kingston and M.F. Lappert, Chem. Commun., (1970) in press.
- 4 T.S. Piper and G. Wilkinson, J. Inorg. Nucl. Chem., 3 (1956) 104.
- 5 M.R. Collier, M.F. Lappert and J. McMeeking, unpublished observations.
- 6 M.L.H. Green and P.L.I. Nagy, J. Organometal. Chem., 1 (1963) 58; M.L.H. Green and A.N. Stear, *ibid.*, 1 (1964) 230.
- 7 J. Dvorak, R.J. O'Brien and W. Santo, Chem. Commun., (1970) 411.
- 8 H. Bürger and U. Wannagat, Monatsh., 94 (1963) 1007; 95 (1964) 1099.
- 9 D.C. Bradley, M.B. Hursthouse and P.F. Rodesiler, Chem. Commun., (1969) 14.
- C. Eaborn, J. Chem. Soc., (1956) 4858; H. Bock and H. Seidl, Angew. Chem., 79 (1967) 1106;
 M.D. Johnson and N. Winterton, J. Chem. Soc. A, (1970) 507; A.R. Bassindale, C. Eaborn,
 D.R.M. Walton and D.J. Young, J. Organometal. Chem., 20 (1969) 49.
- 11 A.R. Bassindale, A.J. Bowles, M.A. Cook, C. Eaborn, A. Hudson, R.A. Jackson and A.E. Jukes, Chem. Commun., (1970) 559.
- 12 U. Giannini and U. Zucchini, Chem. Commun., (1968) 940.
- 13 G. Wilke and M. Schott, Angew. Chem. Int. Ed. Engl., 5 (1966) 583.
- 14 R.B. King, K.H. Pannell, C.R. Bennett and M. Ishaq, J. Organometal. Chem., 19 (1969) 327.
- 15 G. Yagupsky, M. Mowat, A. Shortland and G. Wilkinson, Chem. Commun., (1970) in press.
- J. Organometal. Chem., 25 (1970) C36-C38